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Abstract: Temperature is a main driver for most ecological processes, and temperature 

time series provide key environmental indicators for various applications and research 

fields. High spatial and temporal resolutions are crucial for detailed analyses in various 

fields of research. A disadvantage of temperature data obtained by satellites is the 

occurrence of gaps that must be reconstructed. Here, we present a new method to 

reconstruct high-resolution land surface temperature (LST) time series at the continental 

scale gaining 250-m spatial resolution and four daily values per pixel. Our method 

constitutes a unique new combination of weighted temporal averaging with statistical 

modeling and spatial interpolation. This newly developed reconstruction method has been 

applied to greater Europe, resulting in complete daily coverage for eleven years. To our 

knowledge, this new reconstructed LST time series exceeds the level of detail of 

comparable reconstructed LST datasets by several orders of magnitude. Studies on 

emerging diseases, parasite risk assessment and temperature anomalies can now be 

performed on the continental scale, maintaining high spatial and temporal detail. We 

illustrate a series of applications in this paper. Our dataset is available online for download 

as time aggregated derivatives for direct usage in GIS-based applications. 

Keywords: land surface temperature; environmental monitoring; health risk assessment; 

MODIS reconstruction; time series; online dataset 
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1. Introduction 

High spatial and temporal resolution datasets of environmental indicators are crucial requirements 

for detailed analyses in various fields of research [1–6]. Important environmental indicators are 

derived from temperature time series [7], since temperature is a main driver for most ecological and 

environmental processes [8]. Temperature data can be acquired with satellites carrying thermal 

infrared sensors, which provide continuous coverage of large areas. However, a major disadvantage of 

available satellite-based temperature data is the occurrence of gaps, especially due to clouds, that must 

be filled. 

1.1. Gridded Temperature Surfaces 

Seamless gridded surfaces allow for spatially explicit and detailed analyses, whereas sparse points, 

such as station readings, are only valid for a single location and its immediate surroundings, leaving, at 

times, large gaps between stations. Gridded surfaces of environmental indicators are often created by 

interpolating meteorological point data recorded at ground stations. An alternative to ground station 

data are data acquired through remote sensing. Examples are the commonly used land surface 

temperature and emissivity products (LST/E; [9]) from the Moderate Resolution Imaging Sensor 

(MODIS) instruments onboard the Terra and Aqua satellites, which contain spatialized surfaces with 

global coverage accompanied by a quality assessment layer. MODIS-Terra data are available from 

March 2000, onwards, MODIS-Aqua data from July 2002, onwards, with twice-daily temporal 

resolution for both instruments, MODIS-Terra and MODIS-Aqua. MODIS data have been extensively 

used in continental-scale studies in a number of different research fields, like wildlife habitat distribution 

(NDVI [10]), habitat change monitoring (fraction of photosynthetically active radiation [11]) and land 

cover mapping (various MODIS products [12]). MODIS LST products are available with different 

spatial and temporal resolutions and always include daytime and nighttime land surface temperature  

layers. MODIS data are usually made publicly available for download on a NASA server 

(https://lpdaac.usgs.gov/data_access) a few days after image acquisition [9]. 

1.2. Reconstruction of Remotely Sensed Temperature Maps 

Surface interpolation approaches using only temperature and no auxiliary data fail to produce 

realistic results in areas with complex topography [13] when the data points used for interpolation are 

unevenly distributed, leaving large gaps. Therefore, spatial interpolation methods should not only use 

the existing LST values, but also auxiliary data as predictors for LST in a statistical model. Predicting 

LST with auxiliary data can also enhance the spatial detail to the level of the auxiliary data. Temporal 

interpolation can complement the spatial interpolation of missing values, alleviating the problem of 

large spatial gaps. 

1.3. Previous Approaches 

Temperature reconstruction in the temporal domain has previously been performed using Fourier 

transform by Scharlemann et al. [14], who processed MODIS LST at a full global extent for the years 

2001 to 2005 and extracted parameters for the annual, bi-annual and tri-annual cycle with a resolution 
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of 1000 m, thereby reducing 450 grids to 34 parameters. In a different context, temporal interpolation 

has been performed for NDVI reconstruction using non-linear least squares fits of asymmetric 

Gaussian model functions [15]. Another temporal interpolation method estimates missing Aqua LST 

values from Terra LST values and the seasonal average between Aqua LST and Terra LST [16,17]. 

This method replaces some, but not all, missing values, and the resulting dataset may still not be  

gap-free. Furthermore, this method has been applied at a national scale, but not a continental scale.  

Another possibility for temporal reconstruction is presented by a harmonic analysis of time series 

(HANTS; [18]), which can reconstruct missing values and detect outliers in time series data. Even 

though HANTS was originally developed for NDVI reconstruction, it can, in theory, also be applied to 

LST or any other time series showing periodicity. Regarding spatial interpolation, previously applied 

methods to filter and reconstruct MODIS LST values include 2D [19] and 3D [13] spline interpolation. 

While being a full reconstruction of all layers, the approach of Neteler et al. [13] was only developed 

for a small region with very complex topography. It cannot be extended to larger regions, because 

factors other than topography will become increasingly important when extending the analyzed area 

towards the continental scale. 

For large-extent reconstructed LST time series, the largest study area in terms of the number of grid 

cells that we are aware of, has been analyzed by Crosson et al. [17], who created a daily merged MODIS 

Aqua-Terra land surface temperature dataset for the conterminous United States (eight million km
2
) 

with 1000-m resolution and 16 million grid cells (the study presented here consists of 415 million 

grid cells). 

Hengl et al. [19] applied a statistical interpolation model, where MODIS LST values were used 

together with other auxiliary data to predict daily air temperatures. Lin et al. [20] estimated air 

temperature from MODIS LST and elevation with a multiple regression. The common objective of these 

two studies is the enhancement of spatial detail with the help of one or more predicting variables in a 

statistical model. In general, any surface interpolation method, e.g., inverse distance weighting, spline 

interpolation, kriging, etc., can be applied, but should be combined with a regression approach in order to 

obtain more realistic results. Our approach includes climate conditions as statistical predictors for LST. 

For a summary of previous approaches to reconstruct LST time series, see Table 1 [13,14,17,19,21].  

Here we present a new method for reconstructing spatio-temporal gaps in remotely sensed land 

surface temperature (LST) time series at continental scale. Our approach delivers a final product with 

250 m spatial resolution and four daily values per pixel position. We have developed an innovative 

reconstruction method which we applied to larger Europe (see Figure 1a) for all daily MODIS LST 

data available from 2000 to 2013. To our knowledge, no other method is available for seamless and 

gap-free daily LST reconstruction at continental scale. For risk modelling, seamless and gap-free 

datasets of environmental indicators [13], e.g., in order to derive growing degree days [22] or spring 

warming, are required. Our reconstruction method will enable researchers to use a uniform, gap-free 

and seamless LST dataset and its derivatives (see Table 2) yielding comparable results that are 

crucially needed and lacking so far, e.g., for studies on emerging diseases, parasite risk assessment, 

and temperature anomalies. Furthermore, the presented reconstruction method can easily be adapted to 

continents different from Europe. The new method presented here differs substantially from previous 

studies (see below for a comparison) and provides with the creation of a seamless dataset at continental 

scale an advance over previously published LST datasets. 
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Table 1. Non-exhaustive list of previous publications on MODIS land surface temperature (LST) reconstruction. * MODIS LST products are 

available as daily data (two overpasses per satellite), as well as eight-day and monthly aggregates. Each product includes daytime and nighttime LST. 

The highest temporal resolution is thus achieved by using both the Terra and Aqua daily products (four maps per day). 

Authors Method Spatial Extent Spatial Resolution Temporal Extent Temporal Resolution * Output 

Scharlemann et al., 2008 

[14] 
Temporal Fourier transform Global 1000 m 2001–2005 2 maps/8 days 

34 parameters describing 

LST temporal cycles 

Neteler, 2010 [13] Volumetric (3D) splines Part of Northern Italy 200 m 2000–2008 4 maps/day 
Fully reconstructed  

time series 

Crosson et al., 2012 [17] Seasonal mean Conterminous USA 1000 m 2003–2008 4 maps/day 
Partially reconstructed  

time series 

Hengl et al., 2011 [19] Temporal average, 2D splines Croatia 1000 m 2008 2 maps/8 days 
Fully reconstructed time 

series 

Benali et al., 2012 [21] Temporal aggregation Portugal 1000 m 2000–2009 2 maps/day 
Partially reconstructed 

time series 

Present study 
Temporal average, multiple 

regression, splines 
Europe 250 m 2000–2013 4 maps/day 

Fully reconstructed  

time series 
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Figure 1. Reconstructed land surface temperature; here, 1 January 2010, 10:30 am. Full 

extent (a), before (b) and after (c) spatial enhancement with auxiliary variables. All data 

are in the Lambert azimuthal equal area projection (EPSG (European Petroleum Survey 

Group) code: 3035). The extents in geographical degrees of (b) and (c) are approximately 

39°58′58′′N, 27°33′47′′E, 39°42′45′′N, 27°58′08′′E. 

 

Table 2. List of publicly available datasets derived from reconstructed MODIS LST. 

Dataset download: http://gis.cri.fmach.it/eurolst/. 

Code Description 

BIO1 Annual mean temperature (°C × 10) 

BIO2 Mean diurnal range (monthly mean of diurnal range; °C × 10) 

BIO3 Isothermality ((BIO2/BIO7) × 100) 

BIO4 Temperature seasonality (standard deviation × 100) 

BIO5 Maximum temperature of the warmest month (°C × 10) 

BIO6 Minimum temperature of the coldest month (°C × 10) 

BIO7 Temperature annual range (BIO5–BIO6) (°C × 10) 

BIO10 Mean temperature of the warmest quarter (°C × 10) 

BIO11 Mean temperature of the coldest quarter (°C × 10) 

Monthly mean Monthly mean temperature (°C × 10) 

Our efforts to reconstruct temperature time series for a large area with high detail has been 

motivated by our involvement in continental-scale projects, in particular the EU/FP7 projects, 

EDENext (http://www.edenext.eu/) and EuroWestNile (http://www.eurowestnile.org/). Both address 

vector-borne infections in Europe. Furthermore, this new dataset and its derivatives can be used for the 

assessment of how temperature-influenced agricultural pests spread (e.g., Drosophila suzukii; [23]), 

the monitoring of heat and cold waves and the identification of temperature anomalies. 

2. Materials and Methods 

Our study area covers about 12.5 million km
2
 of land and includes a wide variety of climate zones, 

ranging from hot, arid zones, to permafrost and from coastal plains to mountains with continental 

climates. Elevation ranges from 420 m below sea level to 5600 m above sea level. The boundaries are: 

North: 72°11′19N, South: 23°17′10N, West: 39°53′33W, East: 75°32′30E. At 250-m spatial resolution, 

this region consists of 415 million grid cells in total, of which 200 million grid cells fall on land and 

inland water bodies. We used the daily gridded MODIS products with 1000-m spatial resolution 
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(Terra: MOD11A1; and Aqua: MYD11A1; version 005) provided in an equal-area sinusoidal 

projection. The reconstruction process consists of three steps (see Figure 2 for a summary). In the  

pre-processing step, raw data are mosaicked, reprojected and filtered with the accompanying quality 

assessment. In the next step, some, but not all, gaps are removed with temporal averaging. The final 

and most important step applies spatial statistical interpolation to close the remaining gaps and to 

enhance the spatial detail. 

Figure 2. Overview of the reconstruction process. Raw data are first pre-processed, then 

partially reconstructed in the time domain and, next, fully reconstructed with spatial 

interpolation. The result is a gap-free LST grid for each MODIS overpass. LAEA, Lambert 

azimuthal equal area. 

 

2.1. Pre-Processing 

The raw data (see supplementary Figure S1 for MODIS tile coverage of the study area)  

were mosaicked and reprojected to Lambert azimuthal equal area (EU LAEA, EPSG code 3035) with 

250-m resolution using the MODIS Reprojection Tool (MRT 4.1; https://lpdaac.usgs.gov/tools/ 

modis_reprojection_tool, the gdalwarp command from the Geospatial Data Abstraction Library 

(GDAL) library might be preferred) with nearest neighbor as the resampling method (supplementary 

Figure S2: MODIS tile deformation after reprojection). Nearest neighbor sampling was chosen in order 

to preserve the bit pattern in the quality assessment (QA) band, which would be destroyed by methods, 

such as linear or cubic interpolation. The spatial oversampling from 1000 m to 250 m reduced artefacts 

and pixel shifts (supplementary Figure S2). Oversampling and interpolation of sparse points is a  

well-established method for ground station data (European Climate Assessment and Dataset 

(ECA&D) [24]; Climatic Research Unit time series (CRU TS) dataset [25]). The reprojected MODIS 
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LST values were then filtered with the LST QA band, such that all grid cells with an LST error larger 

than 1 K were discarded.  

Our LST reconstruction method that we employed here uses a combination of a Gaussian kernel 

filter in the time domain followed by global regression analysis and spline-based interpolation in the 

space domain (see the detailed workflow in Figure 3). 

Figure 3. Flow chart of the reconstruction process. The process uses as input the 

MOD11A1 and MYD11A1 products. The output is a mosaicked, reprojected, filtered and 

gap-filled overpass. 

 

2.2. Further Input Data 

Oceans were excluded from both the raw and the reconstructed LST maps using the quality 

assessment of the MODIS NDVI product, MOD13Q1. The quality assessment of the MODIS NDVI 

product, MOD13Q1, distinguishes between the type of water body, e.g., deep ocean, shallow ocean, 

deep inland water and shallow inland water, whereas the land water mask derived from MODIS and 

Shuttle Radar Topography Mission (SRTM) L3 (MOD44W) distinguishes between data sources 
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(SRTM Water Body Dataset, MODIS 250 m water-hits, MODIS 250 m decision-tree, digitized water, 

mosaic of Antarctica water) instead of types of water bodies. As we needed to distinguish between 

ocean and inland water bodies, we used the quality assessment information of the MODIS NDVI 

product, MOD13Q1. The land mask was extended by a buffer of 10 km, because some land areas were 

erroneously marked as ocean.  

We used six additional variables as potential predictors for LST in the regression analysis: elevation, 

solar angle at noon local time, annual precipitation, mean annual temperature, minimum annual 

temperature and the range of annual temperature. Elevation was obtained from SRTM v2.1 

(http://dds.cr.usgs.gov/srtm/version2_1/SRTM3/), complemented with gridded global relief data 

(ETOPO2; http://www.ngdc.noaa.gov/mgg/global/relief/ETOPO2/), for latitudes north of 60° North. 

Voids in the DEM were filled with spline interpolation. The DEM was interpolated with spatial 

averaging to match the target resolution of the reconstructed LST data. The solar angle was calculated 

using the Solar Position and Intensity algorithm of the National Renewable Energy Laboratory (NREL 

SOLPOS 2.0; [26]). The long-term climatic parameters were calculated from daily gridded datasets of 

the European Climate Assessment and Dataset (ECA&D; [24]). In order to obtain climatically 

representative indicators, we aggregated daily ECA&D data per year for 30 years from 1980 to 2010 to 

long-term annual averages for annual precipitation, mean and minimum annual temperature and the 

range of annual temperature. These parameters describe geographical differences in climate, but 

should not describe short-term temporal variation, because this information is provided by the MODIS 

LST data and is to be reconstructed. We used bilinear interpolation to adjust the spatial resolution of 

the climatic parameters to the resolution of the reconstructed LST data. The four climatic parameters 

were reduced by means of a principal components analysis. The first two extracted principal 

components explained more than 95% of the variance of the original system (four climatic variables, 

see supplementary Table S1) and were used in the reconstruction method instead of the original 

climatic variables. 

2.3. Temporal Pre-Processing 

Some of the original LST grids have a very large proportion of missing values (up to 100%).  

On average, 23% of the non-ocean pixels were valid; see Table 3 for a summary of valid pixels per 

month. The purpose of the temporal pre-processing is to reduce the size of the spatial gaps in order to 

make spatial interpolation more accurate. Each map is patched with temporally surrounding original 

maps considering the same time of day of the preceding and following seven days. If there were no 

valid values in any of the preceding and following 7 days, the pixel was not temporally reconstructed. 

The influence of the temporally surrounding maps is weighed with a symmetric Gaussian kernel, such 

that maps closer in time had a larger weight. In order to keep the influence of the patching low, a grid 

cell with a missing value is patched only if the nearest valid grid cell was more than 10 km away, and 

valid values are not altered at all. If an LST grid does not contain any valid values, it is in our method 

reconstructed by using the temporally nearest reconstructed maps of the same time of day, e.g., only 

Aqua daytime values were used to estimate a missing Aqua daytime value. The grid was then 

reconstructed by using the inverse distance weighted average of the closest preceding and the closest 

following reconstructed grid. Inverse distance weighing was needed, because the temporal distances in 
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days to the preceding grid and the following grid could be different. This step was performed after 

reconstructing all grids with valid values. 

Table 3. Percent of valid non-ocean pixels per month in the original MODIS LST products 

for the European continent, averaged for the years 2000 to 2013. 

 Daytime Overpasses Nighttime Overpasses 

Month Terra Aqua Terra Aqua 

January 15.29% 13.65% 20.39% 18.56% 

February 17.33% 14.86% 22.27% 20.63% 

March 22.96% 20.71% 26.35% 24.97% 

April 28.36% 25.26% 29.78% 29.40% 

May 33.45% 28.81% 33.86% 31.68% 

June 36.68% 33.66% 37.77% 33.91% 

July 40.65% 35.64% 42.08% 34.75% 

August 40.42% 36.35% 41.66% 34.60% 

September 38.64% 34.77% 38.90% 33.03% 

October 29.25% 26.43% 27.94% 24.57% 

November 20.55% 18.41% 23.52% 21.03% 

December 14.79% 13.49% 18.59% 17.14% 

2.4. Spatial Interpolation 

After the temporal processing, we combined statistical modeling with spatial interpolation to fill 

any remaining gaps. A grid-wise multiple regression is performed with elevation and solar angle as 

predictors for LST values, providing estimates and residuals of the LST values. If the temperature 

lapse rate (the rate of temperature decrease with increasing elevation) exceeded physical and 

meteorological constraints, we decided to reconstruct the LST dataset by using the temporally nearest 

reconstructed maps of the same time of day. Rolland [27] studied (unrelated to spatial LST 

interpolation) lapse rates of minimum, mean and maximum air temperatures in the Trentino-South 

Tyrol region, finding lapse rates from −0.40 °C/100 m to −0.75 °C/100 m (monthly values). If the 

lapse rate was found to be outside this range, the LST grid was not reconstructed and instead estimated 

from LST grids of the previous and next days; otherwise, the residuals of the first regression were 

predicted with the two principal components describing climate in a second regression, providing a 

second set of estimates and residuals. Outliers in MODIS V005 LST data typically only appear in the 

negative degree Celsius range, as being caused by undetected clouds [13]. A global filter for the whole 

study area on the original LST values is not adequate, because of the large range of valid LST values. 

One possibility would be to remove outliers in the LST values with a moving window filter, but this is 

problematic, because spatial gaps with missing values were sometimes very large (thousands of km
2
). 

Another possibility is to apply a global filter to the residuals of the second regression, where variation 

due to geographic location and climatic conditions has been removed. The lower threshold for valid 

residual values was calculated from quartiles according to Equation (1) (after [13]): 

lower_boundary = 1st_quartile − 1.5 × (3rd_quartile − 1st_quartile) (1) 



Remote Sens. 2014, 6 3831 

 

 

A random selection of 12% (approximately two pixels for each original 1 km × 1 km pixel;  

after [13]) of the filtered residuals (error terms) of the second regression was then interpolated using a 

B-spline approach (in GRASS GIS 7: r.resamp.bspline; based on v.surf.bspline of [28], optimized for 

large raster data) to obtain a seamless, smooth surface from sparse raster points. This step also 

performed the actual spatial enhancement. Finally, the filtered and interpolated residuals were 

converted back to real LST values by adding the estimates and offsets of the two regressions to the 

residuals. This approach of combining a statistical regression model with spatial interpolation is 

comparable to regression kriging (as suggested by [29]).  

2.5. Validation 

For validation of the spatial enhancement, we compared original and reconstructed MODIS LST 

values for twelve days in the years 2003 and 2010. The twelve sampling days were evenly spread over 

the respective year in order to cover all seasons. 

For validation of the gap-filling procedure, we inserted artificial gaps into original LST data, 

reconstructed these “degraded” LST data and compared the reconstructed LST values with the original 

values without artificial gaps. This procedure was applied to the same twelve days, both in the year 

2003 and in the year 2010, as in the first evaluation. The inserted gaps were taken from a day with a 

large amount of missing values in order to simulate realistic gaps. A random selection of pixels would 

have resulted in artificial gaps of 1 pixel size, which is not realistic. 

2.6. Computing Environment 

Data processing was performed on a high performance computing (HPC) system with 300 nodes 

with Scientific Linux 6.4 (http://www.scientificlinux.org) as the operating system. Reconstructing  

time series with a manual or even interactive method is often not feasible, because the amount of  

time series data can be huge (as of December 2013, more than 17,000 MODIS LST maps are available 

for each tile). Therefore, we automated the complete workflow to process the dataset parallelized on 

our HPC system. All calculations were done in GRASS GIS version 7 [30], with the exception of the 

initial MODIS LST mosaicking and reprojection, which was done with the MODIS Reprojection Tool 

(MRT 4.1, https://lpdaac.usgs.gov/tools/modis_reprojection_tool) using pyMODIS as the download 

library (http://pymodis.fem-environment.eu/). Since common statistical software is not able to process 

the six input grids (LST, altitude, solar angle, two principal components, ocean mask) with about 

400 million grid cells each, we used a pure GIS environment optimized for handling large spatial 

datasets in the billions of pixel range. Here, the free and open source software license [30,31] of 

GRASS GIS was essential for the implementation of enhancements relevant to large dataset processing 

(large file support (LFS), external memory, code optimization, statistical analysis of spatial data, 

optimization for HPC systems). We developed a new module to perform multiple regressions on raster data 

using innovative GIS data handling concepts (now included in GRASS GIS 7: r.regression.multi module), 

which minimizes hardware resource requirements, in particular memory consumption, and maximizes 

processing speed. The results were tested against and found to be identical to the results obtained with 

R statistical package 2.14 [32] when tested with smaller, but representative, datasets (the size was 

limited due to R’s memory management constraints). Other routines required for the Europe-wide LST 
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reconstruction were optimized for large datasets where needed, e.g., the principal component analysis 

within GRASS GIS (i.pca module), suitable for datasets in the billions of pixel range. We integrated 

all enhancements in GRASS GIS 7, which can be freely downloaded from the project website 

(http://grass.osgeo.org/download/software/). 

3. Results 

3.1. The Reconstructed Daily MODIS LST Dataset 

The reconstructed daily MODIS LST time series provides substantially more spatial detail than 

other existing temperature time series datasets. Figure 4 shows the European heat wave in July 2003, 

from temperature surfaces interpolated from station data (CRU TS and ECA&D), as well as from our 

enhanced MODIS LST dataset. Comparing original and reconstructed data, the original data show 

distinct blocks (Figure 1b) corresponding to the original 1000-m grid cells, whereas the reconstructed 

LST data are both smoother and more closely follow the terrain features. Slopes in particular are more 

realistically represented in the reconstructed data. The enhancement of the spatial detail is primarily 

caused by elevation as a predictor of LST in the regression model. Spatial enhancement of the 

reconstructed LST grids (Figure 1c) was primarily caused by elevation; because of the predictors used 

only for elevation, the local variation can be higher than the continental variation; the difference in,  

e.g., the solar angle increases with the north-south distance, whereas the difference in elevation of two 

nearby locations may or may not be larger than the difference in elevation of two locations farther 

apart from each other. Since we are working on the continental scale, other factors considering the 

continental scale need to be taken into account in order to achieve small-scale spatial enhancement 

using elevation. For example, using only elevation as a predictor would not work on the continental 

scale, because the temperature at a given height is different between the Pyrenees and the North 

Scandinavian mountains and can, thus, not be predicted by elevation alone. 

We have made the dataset available for download in the form of temperature-based bioclimatic 

variables and monthly averages (see Table 2). 

3.2. Validation 

First, we compared original and reconstructed MODIS LST values for twelve days both in the year 

2003 and in the year 2010. This test would only compare pixels for which original values exist and is 

thus not a test for the gap filling procedure but rather for the introduced spatial enhancement. We 

expected differences between the original and reconstructed LST values due to the increased spatial 

resolution, but the differences should not exceed the accuracy specification of the original MODIS 

product. The absolute of the mean difference was usually below 0.1 K and never larger than 0.4 K, 

thus below the reported accuracy of 1 K for the MODIS LST products. Furthermore, the standard 

deviation of the differences was usually below 1 K with a maximum of 2.2 K. The differences between 

reconstructed and original LST values were considerably smaller than those reported by Crosson et al. [17] 

in a similar validation test. Inspection of the histograms of the differences did not reveal any bias 

(see Figure 5 for an example). 
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Figure 4. The heat wave hitting Europe in July 2003, in different seamless and gap-free 

temperature datasets. At the continental scale, the spatial pattern of (a) Climatic Research 

Unit (CRU), (b) European Climate Assessment and Dataset (ECA&D) and 

(c) reconstructed MODIS LST is comparable, even though the extreme heat in southern 

France is apparent only with MODIS LST (c). At the local scale, some hot areas cannot be 

detected with (d) CRU and (e) ECA&D, which are clearly visible with the higher spatial 

resolution of (f) reconstructed MODIS LST. The two white points in (e) are the 

meteorological stations used by ECA&D in the area. All data are in the Lambert azimuthal 

equal area projection (EPSG code: 3035). The extents in geographical degrees of (d), (e) 

and (f) are approximately 47°04′18′′N, 10°56′22′′E, 46°26′37′′N, 12°05′52′′E. 

 

Figure 5. Validation of the LST reconstruction method. The histogram shows the 

difference between the reconstructed and the original MODIS LST values for 1 January 

2010, at 10:30 am local time (cf. Figure 15 in Crosson et al. [17]). 

 

Second, we evaluated the performance of the actual gap filling procedure. For this test, we masked 

out original values, performed the reconstruction procedure and then compared the original with the 

reconstructed values. Here, we expected larger differences between the original and LST values than in 

the first evaluation test. The absolute of the mean difference was usually below 0.1 K, with a 

maximum of 1.41 K. The standard deviation of the differences was larger than in the first validation 

test, ranging from 1.5 to 4.5 K. 
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4. Discussion 

4.1. Example Applications of the Reconstructed Daily MODIS LST Dataset 

The reconstructed MODIS LST dataset was initially created in order to estimate habitat suitability 

in the scope of vector-borne diseases. For example, the tiger mosquito, Aedes albopictus, an efficient 

vector of various viruses, cannot overwinter in areas with an average January air temperature of less 

than 0°C and requires at least 500 mm of rainfall per year [5]. We estimated the areas suitable for  

Ae. albopictus to overwinter within Europe based on January mean temperature in areas with at least 

500 mm of rainfall per year (see Figure 6). We rescaled the January mean temperatures, such that −1°C 

corresponds to zero (totally unsuitable) and 3°C to one (highly suitable). Values between −1°C and 3°C 

were transformed using a sigmoidal function [5]. None of the previously published approaches is able to 

provide such a detailed habitat suitability map at the continental scale (see also [33]). Additionally, 

Ae. albopictus cannot survive 12-h periods below −10°C [6]. Valleys where the mosquito could survive 

can thus only be identified using temperature data with high temporal and high spatial resolution.  

Another example is the identification of urban heat islands (UHIs). UHIs are created by the ongoing 

urbanization and growth of metropolitan areas, which are significantly warmer than their rural 

surroundings [34]. The population exposed to UHIs is facing a loss of benefit to or even a severe 

impact on health. High resolution temperature time series allow decision-makers to identify those 

UHIs that need to be considered first for mitigation. Figure 7 shows the number of combined hot days 

(>35 °C) and warm nights (>20 °C; [35]) for the Italian city, Milano, in the year 2003. This analysis 

requires daily minimum and maximum temperatures. More information on the heat wave risk of 

European cities is provided by the European Environmental Agency (http://www.eea.europa.eu/ 

data-and-maps/explore-interactive-maps/heat-wave-risk-of-european-cities-1). 

Figure 6. Spatial resolution influencing habitat suitability models. The values indicate the 

probability that any existing diapause eggs of the tiger mosquito, Aedes albopictus, would 

have survived the winter 2011/2012 in Northern Italy based on (a) commonly used  

(e.g., the European Center for Disease Control ECDC) ECA&D data; and (b) reconstructed 

MODIS LST. All data are in Lambert azimuthal equal area projection (EPSG code: 3035). 

The extents in geographical degrees of (a) and (b) are approximately 46°36′28′′N, 

9°54′31′′E, 45°22′27′′N, 12°15′34′′E. 
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Figure 7. The number of combined hot days and warm nights in 2003. The black line 

delineates the Italian city of Milano. (a) Currently used by the European Environmental 

Agency (EEA; after [35]); (b) the equivalent based on MODIS LST. The delineation of 

Milano, covering about 1,300 km
2
, is together, with (a), available on the EEA website. All 

data are in Lambert azimuthal equal area projection (EPSG code: 3035). The extents in 

geographical degrees of (a) and (b) are approximately 45°44′41′′N, 8°47′49′′E,  

45°15′23′′N, 9°39′12′′E. 

 

4.2. LST Interpolation and Aggregation 

MODIS LST, often together with other auxiliary data, has been regularly used to estimate  

near-surface air temperature [19–21,36,37]. In these and similar studies, gap-free LST datasets were 

needed to obtain gap-free near-surface estimates; otherwise, any spatio-temporal gaps in the predictors 

would also be present in the estimates. Therefore, gaps in the MODIS LST products due to cloud cover 

must be eliminated to obtain a complete, gap-free time series dataset. A common solution to this 

problem is to reduce the detail by either using a coarser spatial or a coarser temporal resolution, or 

both. However, for many applications, weekly or monthly aggregates would be unsuitable, because 

daily data are required as input, and instead of spatial aggregation, a surface interpolation approach is 

more appropriate in order to preserve spatial detail. Spatial aggregation combines several pixel values 

into one new value, whereas gap interpolation estimates missing values by considering the spatial 

pattern of surrounding valid pixel values. For other applications, the full MODIS LST dataset with 

four values per day can be easily summarized and aggregated to, e.g., weekly, monthly or seasonal 

data (see Table 2 for a list of some derivatives and the previous section). LST data from geostationary 

satellites with a high temporal resolution (that records every few minutes) could be used in a more  

fine-tuned temporal reconstruction process, because for any given location, the chances are higher to 

obtain some valid records within a given day. A simple temporal average would in this case be 

inadequate, because records would come from different times of the day. Geostationary satellites do 

not provide global coverage, thus an individual procedure would need to be established for each 

geostationary satellite. 

4.3. Potential Error Sources 

As with other LST reconstruction approaches (e.g., [13,17]), the reconstructed LST dataset assumes 

clear-sky conditions or intermittent cloudiness. With intermittent cloudiness, the surface temperature 
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will still be lower than under persistently cloud-free conditions, but LST reconstructed from remote 

sensing data will always be an overestimate for areas under persistent cloud cover. The accuracy of LST 

reconstruction could be improved by including additional data sources, such as emissivity-dependent 

models on LST dynamics. We regard persistent cloud cover as the main source of inaccuracy in the 

reconstructed LST values. Another source of inaccuracy is the spatial interpolation using splines. The 

b-spline approach used here prevents overshoots (excessively high or low values), but at the same time, 

might smooth out local extremes. The same principle holds true for temporal averaging: if there is an 

extreme event, but no original LST value is available, this extreme event cannot be estimated from the 

previous and following days. We assume that hot and cold spells typically last for several days, which 

increases the chances that these events are at least represented in the original LST values. Lastly, we 

rely on the quality assessment included in the MODIS products. Any errors in the quality assessment 

where bad quality pixels are erroneously flagged as good quality pixels would be directly reflected in 

both the original and the reconstructed LST values. 

4.4. Spatial and Temporal Resolution 

The spatial resolution can significantly affect the results for certain applications, e.g., disease risk 

assessment or mapping heat waves in urban areas. With too coarse of a resolution, high risk areas can 

remain undetected, the spatial equivalent of a statistical Type II error, as previously shown in Figure 4, 

illustrating the heat wave in Europe in July 2003, using station data (CRU TS and ECA&D) and our 

enhanced MODIS LST. The general pattern on the continental scale is similar, but only the high 

resolution of MODIS is able to detect hot areas in valleys, causing false negatives (undetected hot 

areas) in the two other datasets. 

The ability of temperature-based suitability maps to identify small islands of high suitability is 

directly dependent on the spatial resolution. Such “islands” cannot be identified with too coarse of a 

resolution in areas with high temperature variability, e.g., mountainous areas with a resolution of  

10 km or coarser, where valleys narrower than the grid resolution and risk areas smaller than the pixel 

size cannot be represented by the data. High spatial temperature variability is not only present in 

topologically complex terrain (Figure 6), but can also be observed in flat areas, e.g., due to differences 

in land cover and land use (Figure 7). 

We regard a detailed temperature time series dataset to be relevant for a series of other applications. 

Temperature time series are required for risk assessments of fast spreading agricultural pests,  

e.g., Drosophila suzukii, when using environmental indicators relevant for the respective species 

lifecycle. Agricultural suitability analyses, e.g., for grapevine varieties [38], rely on temperature  

time series. Studies of the consequences of the ongoing climate change, e.g., recent extreme 

temperature anomalies [39], are based on temperature time series, as well as investigations of the 

impact of global warming on local ecosystems in more detail [8,39]. Heat wave monitoring detects 

unusually high peaks in temperature time series. As a prominent example, the heat wave of summer, 

2003 (Europe), is clearly visible from space at high spatial resolution (Figures 4 and 7). Late frost 

events in spring may have a significant damaging impact on plants and lead to an economic loss in 

agriculture [40]. Additionally, late frost is considered to be an abiotic factor triggering tree mast [41], 
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which, in turn, leads to high rodent densities and, subsequently, to Hantavirus epidemics, as observed 

in temperate Europe [42]. 

Furthermore, our proposed reconstruction method can be adapted for RS-derived LST time series 

other than the MODIS LST products. For example, the GlobTemperature initiative of the European 

Space Agency (ESA), which is also aware of the need to fill gaps due to cloud cover, intends to create 

an LST time series database by merging data from different sensors. These data, being remotely sensed 

data, also contain gaps in space and time that need to be filled in order to create a seamless and  

gap-free database. 

5. Dataset Availability 

Due to the sheer size of the full dataset (13 TB), we offer aggregated reconstructed MODIS LST 

data (see the list in Table 2) to scientists and practitioners for free download in common GIS formats 

(http://gis.cri.fmach.it/eurolst/). 

6. Conclusions 

To our knowledge, this is the first attempt to fully reconstruct climatic data acquired with remote 

sensing at high spatial and temporal detail with a continental extent covering very different climatic 

zones, while enhancing spatial detail. Concerning scale, there is, in general, an inverse relation 

between grain (sensu Dungan et al. [43]) and extent: modeling approaches are preferably applied at the 

local scale with higher resolution data or at the global scale with lower resolution data.  

Our approach is one of the few examples applying intensive data processing on a large spatial extent 

with both high spatial and temporal resolution data. The public availability of MODIS LST data 

together with the free and open source software used (MRT, GRASS GIS) guarantees a high 

reproducibility of our approach, also allowing peer review of the code used [31]. We believe that this 

new reconstruction method has the potential to produce results with hitherto unprecedented detail and 

accuracy in various fields, e.g., agriculture, environmental monitoring, epidemiology and mapping of 

temperature anomalies. 
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