
1Scientific RepoRts | 6:24451 | DOI: 10.1038/srep24451

www.nature.com/scientificreports

Functional traits help to explain 
half-century long shifts in pollinator 
distributions
Jesús Aguirre-Gutiérrez1,2, W. Daniel Kissling2, Luísa G. Carvalheiro3,4, 
Michiel F. WallisDeVries5,6, Markus Franzén7 & Jacobus C. Biesmeijer1,2

Changes in climate and land use can have important impacts on biodiversity. Species respond to such 
environmental modifications by adapting to new conditions or by shifting their geographic distributions 
towards more suitable areas. The latter might be constrained by species’ functional traits that influence 
their ability to move, reproduce or establish. Here, we show that functional traits related to dispersal, 
reproduction, habitat use and diet have influenced how three pollinator groups (bees, butterflies and 
hoverflies) responded to changes in climate and land-use in the Netherlands since 1950. Across the 
three pollinator groups, we found pronounced areal range expansions (>53%) and modelled range 
shifts towards the north (all taxa: 17–22 km), west (bees: 14 km) and east (butterflies: 11 km). The 
importance of specific functional traits for explaining distributional changes varied among pollinator 
groups. Larval diet preferences (i.e. carnivorous vs. herbivorous/detritivorous and nitrogen values of 
host plants, respectively) were important for hoverflies and butterflies, adult body size for hoverflies, 
and flight period length for all groups. Moreover, interactions among multiple traits were important to 
explain species’ geographic range shifts, suggesting that taxon-specific multi-trait analyses are needed 
to predict how global change will affect biodiversity and ecosystem services.

Changes in climate and land use can have important effects on species distributions and may ultimately affect the 
supply of ecosystem services (e.g. pollination, carbon storage, clean water supplies, and pest control)1. Over the 
last decades, climate change has intensified around the world, including increasing temperatures and significant 
shifts in precipitation patterns and increases in the occurrence of extreme weather events2. Moreover, species’ 
habitats have changed substantially due to agricultural expansion and increased use of fertilisers, herbicides and 
pesticides. In some regions, large-scale land-use changes have ceased recently although highly modified land-
scapes with intensive agriculture and high nitrogen deposition levels remain3,4. This poses key challenges for 
conserving biodiversity5.

Shifts in species’ geographic ranges, including range contractions, range expansions and major changes in 
north-south and east-west distributional extents have been recently observed across the globe6. An in-depth 
understanding of these range shifts is needed for deriving essential measurements and indicators to report biodi-
versity change7,8, and for the development of effective conservation programmes under ongoing and future global 
change. While range shifts are increasingly quantified, large knowledge gaps remain in how drivers impinge on 
functional aspects of biodiversity and ecosystem functioning9. Functional traits —i.e. morphological, physio-
logical, phenological or behavioural characteristics of species that are important for their growth, survival and 
reproduction— can constrain the tolerances of species and their responses to environmental changes (‘response 
traits’ sensu Díaz et al.10; see also Eskildsen et al.11). In turn, changes in species and functional trait composition 
can affect ecosystem functioning and service provision9. Hence, establishing the relationships between species 
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distributional changes and multiple functional traits is a paramount prerequisite for predicting the consequences 
of global change for biodiversity and human well-being.

Insect pollinators are key to ecosystem functioning, with about 60–80% of wild plants benefiting from animal 
pollination12. Moreover, pollinators are especially sensitive to climate and land-use modifications13,14, which are 
key drivers causing biotic homogenisation and pollinator loss around the world13. In Europe, most large-scale 
land-use changes have taken place during the first half of the 20th century (~1950), and only after 1990 more pol-
icies benefiting the environment have been implemented to counteract negative effects on biodiversity15. These 
policies have been directed to enhance (semi-) natural habitats (e.g. grasslands and forest) and —in the case of 
agri-environmental schemes— to increase the feeding and nesting resources for insect biodiversity in agricul-
tural landscapes15. These policies can ameliorate the negative effects of climate and land-use change on insect 
pollinators, and may partly explain the slow-down of pollinator diversity declines in NW-Europe16. However, it 
remains unclear which species have benefitted most or least, and whether and how functional traits determine the 
responses of pollinators to long-term climate and land-use change.

Here, we investigate how multiple functional traits of flower-visiting insects (i.e. bees, butterflies and hov-
erflies; in the following referred to as ‘pollinators’) relate to changes in species distributions over a period of 
> 50 years. We compiled a comprehensive database of pollinator occurrences from two time periods (1951–
1970 vs. 1998–2014) across the Netherlands, excluding species with few sampled locations (less than 5 records) 
and those that have not been constantly present in the study area. This included ca. 60% of the known species 
of Dutch pollinators. These limits are needed for data analysis, but eliminate most of the rare, threatened spe-
cies as well as those that have gone extinct or recently colonized the Netherlands. We used species distribution 
models (SDM) together with climate and land use data to model species’ geographic distributions at 5 ×  5 km 
resolution. We then applied multivariate linear models with pollinator range changes between time periods as 
response variables (i.e. areal range changes as well as latitudinal and longitudinal shifts), and multiple functional 
traits as predictors including the initial range size of the species as a control variable (see methods section). The 
selected functional traits (Table 1) are thought to represent insects’ response traits (sensu Díaz et al.10) to climatic 
and land-use changes and are related to key aspects of their life histories (dispersal, reproduction, habitat use, 
and diet). Because multiple traits are often involved in species responses to both climate and land-use change  
(e.g. Diamond et al.17; Williams et al.18), and these can act simultaneously, we included their two-way interaction 
terms in all analyses.

Trait Trait category Type
Global 

change driver Units Description Reference

Body size Dispersal Continuous Climate/Land 
use Millimetres Intertegular span (bees), wing span 

(butterflies), body length (hoverflies) 55–58

Flight period Reproduction/Dispersal Continuous Climate/Land 
use Count Number of weeks flying per year 55–57,59

Voltinism Reproduction Categorical Climate Univoltine or multivoltine
Number of generations per year (i.e. 
number of completed life cycles): 
univoltine (one generation) vs. 
multivoltine (≥ 2 generations)

55–57,59

Habitat specialisation Habitat use Categorical Land use Specialist or generalist

Whether habitat use is restricted 
or not: one habitat type vs. several 
(bees); predominant association 
with anthropogenic CORINE habitat 
types (agricultural and urban as: 
generalists) or not (semi-natural 
habitats: specialists) (butterflies); 
number of CORINE macro habitats 
to which adults are mainly associated: 
one vs several (hoverflies).

55,57,59,60

Larval food preference Diet Categorical/Continuous Land use

Polyphagous vs. non-
polyphagous (bees); rank values 
1− 4 (butterflies); carnivorous 
vs. herbivorous/detritivorous 
(hoverflies)

Diet preference of larvae: bee’s 
lectic preference (related to pollen 
and nectar resources), with non-
polyphagous representing mono- and 
oligo-lectic species and polyphagous 
representing poly-lectic species. For 
butterflies, number of host plants 
(1: monophagous; 2 oligophagous; 
3: polyphagous -multiple species, 
1 plant family; 4: polyphagous 
-multiple species,> 1 plant family). 
For hoverflies, whether feeding on 
living animals: carnivorous or other: 
herbivorous and detritivorous.

55,57,59

Larval food dependence 
on nitrogen Diet Continuous Land use Ellenberg nitrogen value (only 

available for butterflies)

Nitrogen value of host plants: average 
Ellenberg nitrogen indicator values 
of butterflies’ larval host plants 
(describing soil fertility conditions 
and nitrogen preferences).

61–65

Table 1. Characteristics of functional traits of pollinators (bees, butterflies, hoverflies) and their relation 
to global change drivers (climate and land use change). Traits are grouped into four trait categories (dispersal, 
reproduction, habitat use, and diet). The presented traits are hypothesized to be “response” traits (sensu Díaz  
et al.10) to one or the two global change drivers presented.
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Despite the loss of several species in the studied region during the past century16, given the decrease of major 
land-use changes in the Netherlands in recent decades4 and the investments into agricultural practices promoting 
biodiversity15, we expected that several pollinator species should have expanded their ranges over the studied 
period. In particular, we hypothesized that habitat use (i.e. degree of habitat specialisation) and diet (i.e. larval 
food preferences) might be key to explaining areal range changes19. More specifically, we predicted that habitat 
generalists and species with broad diets and widely distributed feeding resources should have increased their 
distributional extent more than species with more specialised habits. Due to increased changes in temperature 
and precipitation during the last half-century20, we further expected that observed range shifts along latitude and 
longitude might be related to dispersal and reproductive traits that enable species to better (and more abundantly) 
move across landscapes. Specifically, we expected that range shifts are more accentuated for species with large 
body size, long flight periods and multiple generations per year, and that species generally shift towards northern 
latitudes, given the recent temperature increases2. Interactions between traits are expected, as for example the 
lengths of flight period (a proxy for dispersal) may interact with traits representing habitat use so that species 
with long flight periods may be better able to colonise distantly located habitats. Furthermore, the length of flight 
period may also interact with species diet preferences because species with long flight periods can access a more 
varied set of feeding resources at different times of the year21. For longitudinal shifts, both climate and land use 
conditions might be relevant, and thus we expected several functional traits to be relevant for these shifts.

Results
Spatial changes in pollinator distributions. From the species included in the analysis (bees: 207, but-
terflies: 61, hoverflies: 202), our linear models show that in the past recent decades bees expanded their mod-
elled distributional area on average by 74%, butterflies by 53% and hoverflies by 123% (Fig. 1a left). Hence, the 
increases in areal ranges of hoverflies were significantly more accentuated than those of the two other pollinator 
groups (Fig. 1; statistical details are presented in Supplementary Table S1). From the total number of known 
species in the Netherlands (bees: 358, butterflies: 106, hoverflies: 328), at least 48% (bees), 44% (butterflies) 
and 53% (hoverflies) expanded their distributional range from period 1 (1951–1970) to period 2 (1998–2014). 
Nevertheless, several species presented range contractions: 33 bee species, 14 butterfly species and 25 hoverfly 
species (Fig. 1b, red colours; Table S5).

In addition to the areal range changes, the three pollinator groups also showed substantial latitudinal and/or 
longitudinal range shifts (Fig. 1a middle and right, Supplementary Table S2). Across all three pollinator groups, 
79% of the analysed bee species, 77% of the butterflies and 71% of the hoverfly species have shifted northwards. 
Of the known Dutch species, this represents 46%, 44% and 44%, respectively. Latitudinal shifts were pronounced. 
On average, bees shifted 22 km northwards, butterflies 17.5 km, and hoverflies 19 km. Longitudinal range shifts 
(Fig. 1a right) were less pronounced than latitudinal shifts (Fig. 1a middle). Interestingly, bees and butterflies 
shifted in opposite directions. Most of the studied bee species (64%, representing 37% of all Dutch species) shifted 
significantly westwards (on average 14 km) and most butterflies (71% of analysed species, representing 41% of all 
Dutch species) shifted significantly eastwards (on average 11 km). Hoverflies showed a mixed picture, with 49% 
(32% of the Dutch species) shifting west and 51% east, resulting in an overall net change of 1.8 km.

As a result of the range change described above, increases in the number of bee species were found mostly in 
the south-western part, while for butterflies increasing species numbers were more frequent in the east, and for 
hoverflies across the central parts (Fig. 1b, blue colours). For all three taxa, species losses were detected mostly in 
the south-eastern region, but also in coastal areas for butterflies and hoverflies (Fig. 1b, red colours).

Areal range changes in relation to functional traits. Several functional traits and their interactions 
helped to explain these range changes and distributional shifts of pollinators (Table 1). Areal range changes were 
mostly explained by traits related to habitat specialisation, larval feeding habits, flight period, and body size 
(Fig. 2; Table 2 and Supplementary Table S3). Habitat specialisation was important to explain areal range changes, 
but the strength of this effect differed among groups (Fig. 2a–c). As predicted, habitat generalists of bees and 
butterflies showed larger range expansions than habitat specialists (Fig. 2a,b). Hoverfly habitat generalists and 
specialists with small initial range size showed higher range increases than species with wide initial range sizes, 
with habitat specialists having slightly stronger increases than habitat generalists when initial range size was small 
(Fig. 2c). Besides habitat specialisation, larval feeding preferences also played a role for range changes, but only 
for hoverflies (Fig. 2d). Species with carnivorous larvae (feeding mostly on aphids) showed more pronounced 
areal range expansions with increasing flight period length than herbivorous/detritivorous species (Fig. 2d). Body 
size was only important for hoverflies for which large-bodied species showed stronger areal range expansions 
than small-bodied species (Fig. 2e).

Latitudinal shifts in relation to functional traits. Functional traits that explain latitudinal range shifts 
varied greatly among the three pollinator groups (Fig. 3; Table 2 and Supplementary Table S3). For bees, body size 
was the only trait explaining latitudinal range shifts, but the effect was weak, only explaining a small part of the 
variance of the data (Table 2, see 2nd best model). Small-bodied bee species showed slightly stronger shifts towards 
northern latitudes than large-bodied species (Fig. 3a). For butterflies, both habitat specialisation and larval food 
preferences (i.e. nitrogen value of diet) were associated with latitudinal shifts (Table 2). Habitat generalists and 
species whose larvae feed on nitrophilous plants (plants adapted to high nitrogen conditions) showed stronger 
shifts towards northern locations than species feeding on non-nitrophilous plants (Fig. 3b, left). However, but-
terfly habitat specialists feeding on non-nitrophilous plants shifted their ranges more than species feeding on 
nitrophilous plants (Fig. 3b, right). The effect of larval feeding habits additionally interacted with flight period, 
with butterfly habitat generalists again showing opposite trends to habitat specialists (Fig. 3b). For hoverflies, 
larval food preferences (carnivorous vs. herbivorous/detritivorous) also played a role to explain latitudinal shifts, 
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but this depended on voltinism (Fig. 3c): univoltine species (with one generation per year) with herbivorous/
detritivorous larvae showed stronger shifts towards northern locations than carnivorous hoverfly species. For 
multivoltine hoverflies, no effect of larval diet preference could be detected.

Longitudinal shifts in relation to functional traits. Longitudinal range shifts were also influenced by 
multiple functional traits, including flight period length, voltinism, habitat specialisation and larval feeding hab-
its (Table 2 and Supplementary Table S3). For bees, species with prolonged flight periods and multiple genera-
tions per year showed stronger shifts towards western locations than univoltine species with short flight periods 
(Fig. 4a). However, these traits only explained a small portion of the longitudinal shifts (Table 2). For butterflies, 
habitat generalists that have short flight periods and habitat specialists that have longer flight periods showed 
the strongest shifts towards eastern locations (Fig. 4b). For hoverflies, larval feeding preference was the only trait 
explaining longitudinal range shifts (Fig. 4c; Table 2). Hoverflies feeding on animals (carnivorous) tended to shift 
towards the west whereas species feeding on other sources (herbivorous/detritivorous) tended to shift towards 
the east.

Discussion
Global change profoundly modulates biodiversity, but how the intrinsic characteristics of species constrain their 
long-term responses to climate and land-use change remains little explored. Here, we used a comprehensive 
long-term dataset of species occurrences in the Netherlands to evaluate how key aspects of insect life histories 
affect the distributional responses of 470 pollinators (ca. 60% of the known Dutch pollinator species, but exclud-
ing species that are very rare or did not occur in the Netherlands during one of the time periods analysed) to cli-
mate and land-use change since the 1950s. Our study clearly shows that species range changes were mediated by 

Figure 1. Half-century changes in species distributions of Dutch pollinators (bees, butterflies, hoverflies). 
(a) Three aspects of species distributional changes between period 1 (1951–1970) and period 2 (1998–2014) 
are captured. Left: areal range changes (% change in geographic range size between periods) as obtained from 
back-transformed values of model estimates. Middle: latitudinal range shifts (latitudinal change of the range 
centroid between periods, with positive values representing northward shifts and negative values southwards 
shifts, in km). Right: longitudinal range shifts (longitudinal change of the range centroid between periods, with 
positive values representing eastward shifts and negative values westward shifts, in km). For all spatial range 
changes, the means ±  95% confidence interval across all species within a pollinator group are presented. For 
statistical details see Table S1. (b) Maps of net changes in the number of species per grid cell and pollinator 
group across the Netherlands. The maps illustrate the number of species colonising a grid cell between periods 
minus the number of species abandoning the same grid cell. Blue colours: grid cells with more range expansions 
than contractions. Red colours: grid cells with more range contractions than expansions. The maps were created 
using the R “raster” package (https://cran.r-project.org/web/packages/raster/index.html).

https://cran.r-project.org/web/packages/raster/index.html
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Figure 2. Areal range changes of pollinators (bees, butterflies, hoverflies) explained by species traits.  
(a) Bee habitat generalists show on average greater areal range expansions than specialists. (b) Butterfly habitat 
generalists show range expansions whereas habitat specialists show contractions. (c) Areal range expansions of 
hoverflies are similar in magnitude for both habitat generalists and specialists. The effect of habitat specialisation 
is dependent on the species initial range size. (d) Hoverfly’s areal range changes depend on larval food and 
flight period length. Areal range changes of hoverflies with larvae feeding on animals increase more strongly 
with flight period length than those of species with larvae feeding on other resources. (e) Effect of body size on 
areal range changes of hoverflies. Large-bodied species increase range size more strongly than small-bodied 
species. For all plots the average prediction ±95% confidence intervals are shown. For statistical details see 
Supplementary Table S3.

Pollinator group Best models Explanatory variables selected Adj. R2 BIC Δ BIC

Areal range change Bees 1 H IR − − 0.23 273.1

2 − IR − − 0.21 274.2 1.1

Butterflies 1 H − − − 0.39 132.4

Hoverflies 1 H ×  IR F ×  LDP S − 0.37 305.1

2 H F ×  LDP S IR 0.34 305.3 0.2

Latitudinal shift Bees 1 IR − − − 0.05 − 404.2

2 S IR − − 0.07 − 403.7 0.5

Butterflies 1 H ×  ND H ×  IR F ×  ND − 0.37 − 175.5

2 H ×  LDP H ×  IR − − 0.31 − 175.3 0.2

Hoverflies 1 V ×  LDP IR − − 0.21 − 452.6

Longitudinal shifts Bees 1 − − − − − − 143.4

2 F − − − 0.02 − 142.5 1

3 V − − − 0.02 − 142.1 1.3

Butterflies 1 H ×  F F ×  IR 0.31 − 119.9

Hoverflies 1 LDP IR − − 0.08 − 240

Table 2. Effects of pollinator functional traits on areal range changes and shifts along latitude and 
longitude. The most parsimonious model selected by means of the Bayesian Information Criteria (BIC) is 
shown together with other models with a ΔBIC <  2 for each group of pollinators (bees, butterflies, hoverflies). 
For a detailed version of the table see Supplementary Table S3. F: Flight period; LDP: Larval diet preference; H: 
Habitat specialisation; ND: Larval diet preference related to Ellenberg nitrogen value of food. plant; S: Body size; V: 
Voltinism; IR: Initial range size.
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Figure 3. Latitudinal range shifts of pollinators (bees, butterflies, hoverflies) explained by species traits. 
(a) Effect of bee body size on latitudinal range shifts, with smaller species tending to shift more towards 
northern locations than larger species. (b) Butterfly latitudinal range shifts depend on habitat use (generalist vs. 
specialists), flight period length and larval host plant use. We present the model results for low (2) vs high (7) 
nitrophily values. Habitat generalists feeding on larval host plants with high nitrophily values (left panel: green 
dots) shift more towards the north than generalists feeding on plants with low nitrogen values (left panel: black 
dots). The opposite is observed for habitat specialists (right panel). Hence, butterfly species with larval host 
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multiple traits related to dispersal, reproduction, habitat use and diet. Moreover, different pollinator groups (bees, 
butterflies, hoverflies) often showed contrasting trait-mediated responses, partly driven by interactions among 
multiple functional traits. This suggests that taxon-specific multi-trait analyses are needed to better understand 
how global change affects species distributions and ecosystem functioning.

Spatial changes in pollinator distributions. We detected range expansions for most studied species 
over the last half century. These range expansions may be also understood as increases in the areas with suitable 
environmental conditions for the pollinators here analysed but not necessarily as increases in habitat quality, 
area of occupancy, population size or population persistence within the modelled ranges. The detected expan-
sions might be related to temperature increases, a slow-down of major land-use changes, and investments into 
practices to enhance biodiversity as agri-environmental schemes15,20,22,23,24. Alternatively, some of these modelled 
range expansions could be caused, at least partly, by an increased sampling effort over time. However, as shown 
in Fig. S1 (see also methods section in “Spatial changes in pollinator species distributions”), this is unlikely to 
have a strong effect as the sampled grid cells in period 1 and period 2 covered almost the same distributional 
extent. Moreover, the sampled grid cells did not highly differ in their area covered, suggesting that the observed 
areal range changes are unlikely to be caused by sampling bias. The recorded shifts of the majority of species (all 
groups) towards higher latitudes suggest that species have generally expanded northwards during the last fifty 
years, most likely due to global warming. Shifts detected towards the west (bees) and east (butterflies) might 
be more related to land use changes, but climate change could also play a role here. This requires more detailed 
analyses about the global change drivers underlying these range shifts. Moreover, several species from the three 
pollinator groups (151 of bees, 45 of butterflies and 126 of hoverflies) could not be included in this analysis due 
to our rigorous selection criteria (see methods). These species are likely to represent declining or rare species, 
or species which have only recently moved into the study area. Indeed, previous studies encompassing a larger 
set of species have detected local and global species richness declines in the study region during the same study 
period16. Future work should investigate in more detail the distributional trends of such species which could help 
to evaluate the generality of our findings.

Areal range changes in relation to functional traits. The range expansions for bees, butterflies, and 
hoverflies as reported here are consistent with recently reported species richness trends which suggest a pattern of 
slowdown of declines and sometimes even pollinator recovery in NW-Europe16. As expected, habitat generalists 
expanded more than habitat specialists, supporting the widely observed replacement of ecological specialists by 
broadly adapted ecological generalists11. This may be driven by changes in anthropogenic habitats and decreases 
in (semi-)natural habitats (except forests) in the Netherlands over the studied time period4. The stronger expan-
sion of habitat generalists relative to habitat specialists was observed for bees and butterflies (Fig. 2a,b). For 
hoverfly species the effect of habitat specialisation depended on their initial range size: the difference between 
habitat specialists and generalists was most pronounced for species with large initial range sizes (Table S3). In the 
Netherlands, the large amount of agricultural lands (which benefit aphid-feeding hoverflies) and the recovery of 
forest systems (which benefit saproxylic hoverflies) could explain these parallel range expansions of both hoverfly 
habitat specialists and generalists, and the detected effect of larval diet preferences25–27. The effects of flight period 
length and body size on hoverfly range expansions may reflect the lower susceptibility of species with large body 
size and prolonged flight periods to climate and land-use modifications (see Chown et al.28).

Latitudinal shifts in relation to functional traits. We report pronounced half-century long range shifts 
towards northern latitudes for all three pollinator taxa. These findings are consistent with previously reported 
decadal latitudinal range shifts of other organism groups29. Overall, these latitudinal shifts were only moderately 
related to species traits of bees. Body size, the only retained predictor trait, explained only a small part of bees’ 
latitudinal shifts, suggesting that it may not be a strong proxy for species dispersal capacity as a response to envi-
ronmental change (see Stevens et al.30). We found that larval food preferences play an important role in explaining 
the magnitude of latitudinal range shifts in butterflies and hoverflies, but not in bees. In contrast to bee species, 
butterflies and hoverflies have larvae that highly depend on resources in their immediate neighbourhood31,32. Our 
results for hoverflies and butterflies might therefore exemplify the importance of feeding and nesting resources 
for the colonisation and population persistence of these taxa, in addition to climate33. For butterflies with wide 
habitat preferences, latitudinal shifts were most accentuated if larval host plants have affinities with nitrogen-rich 
habitats. The Netherlands is among the countries with the highest nitrogen deposition levels worldwide3, which 
has led to strong increases of nitrophilous plants34 and potential consequences for development rates, repro-
ductive potential35 and the distribution of many butterflies36. Moreover, although butterflies showed an over-
all expansion towards the north, the rate of expansion is slower (< 50%) than the rate of climatic warming for 
most butterfly species37, which may result in a non-equilibrium of species distributions and suitable habitats. For 

plants that have low nitrophily values (both panels: black dots) shift towards the south for generalists (left) but 
towards the north for specialists (right). Latitudinal range shifts of both specialists and generalists also depend 
on flight period, with northward shifts increasing with flying weeks when larval host plants have low nitrophily 
values, and decreasing when larval host plants have high nitrophily values. (c) Effect of voltinism and larval 
food plants on latitudinal shifts. Univoltine species (left panel) show smaller northward shifts in species which 
have larvae feeding on animals (carnivorous) compared to species with larval feeding on plants and organic 
matter (herbivorous/detritivorous. In contrast, there is no difference for multivoltine species (right panel). For 
all plots the average prediction ±  95% confidence intervals are shown. For statistical details see Supplementary 
Table S3.
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hoverflies, the effect of larval food preferences on latitudinal shifts further depended on voltinism (i.e. number of 
generations per year), with univoltine herbivorous/detritivorous species showing stronger northwards shifts than 
other hoverflies species. This implies that plant and organic feeding resources have become more widely available 
in northern locations (e.g. via increases in forested ecosystem favouring saproxylic species25), but that species 
with only one, possibly long-lived, generation per year can reach these resources more easily compared to species 
with many, but short, generations.

Longitudinal shifts in relation to functional traits. Range shifts along longitude have been investigated 
less than latitudinal range shifts6. We show that longitudinal shifts can be partially explained by flight period 
length (butterflies), habitat specialisation (butterflies), and larval diet preferences (hoverflies). For bees, the effects 
of traits (flight period and voltinism) on longitudinal shifts were rather weak (see Table S3), suggesting that addi-
tional traits may be important for mediating bee species responses to environmental change.

The tendency of butterflies to shift towards the east may reflect changes in (semi-) natural habitats (especially 
for habitat specialists), which have become less available in the west where highly populated urban centres and 
agricultural lands have expanded (e.g. in the Randstad area; see map in Hazeu et al.23). This might also explain 
why generalist butterflies occupy a wide range of conditions along the longitudinal gradient (east-west) as many 
of them are adapted to human-dominated areas. Moreover, the long flight periods of some butterfly species may 
enhance their winter survival by facilitating the access to feeding resources throughout the year21. In our analysis, 
the divergence in longitudinal trends (east or west) of hoverflies is related to their different larval diet preferences. 
Species with larvae feeding on animals shifted towards the west, where agriculture landscapes (and thus feeding 
resources for aphid feeders26) have become available. The shifts towards the east detected for herbivorous/detri-
tivorous hoverfly species could be explained by an increased availability of (semi-)natural habitats such as forest 
ecosystems in this area25.

Conclusions. Substantial changes in species distributions of the more common pollinators have occurred in 
the Netherlands over the last half century. This includes pronounced range expansions for many species as well 
as range shifts towards the north, west and east. These spatial changes in pollinator distributions have potentially 
affected ecosystem functions (i.e. pollination of wild plants) and ecosystem services (i.e. pollination of crops), 
although the specific consequences for biodiversity and human well-being remain poorly quantified. Our results 
show that multiple functional traits related to dispersal, reproduction, habitat use, and diet partly allow to predict 
such range changes, but the relevance of specific traits differs among pollinator groups. The fact that no clear 
relationship was found between bee species traits and their latitudinal and longitudinal range shifts suggests that 
other traits might be important to explain the range shifts of this group. For butterflies, and to a lesser extent 
for hoverflies, we show a strong relationship between the included functional traits and their spatial distribu-
tional shifts, making them good examples of trait-mediated responses to environmental changes across time. 
Moreover, interactions among multiple traits appear to be important to predict latitudinal and longitudinal shifts, 
with contrasting trends between habitat specialists and generalists or between species with different reproductive 
potential (e.g. univoltine and multivoltine species). We therefore suggest that more taxon-specific analyses on 
trait-mediated range changes are urgently needed to predict how global change will affect the future of biodiver-
sity and human well-being. Additionally, we highlight the need for long-term monitoring programmes for polli-
nators and other insects, not only for common and widespread species, but also for rare and narrowly distributed 

Figure 4. Longitudinal range shifts of pollinators (bees, butterflies, hoverflies explained by species traits. 
(a) Bee species with long flight periods show slightly stronger shifts towards western locations than species 
with shorter flight periods. (b) Longitudinal shifts of butterfly species further depend on habitat specialisation, 
with long-flying specialists shifting more towards eastern locations than long-flying habitat generalists. 
(c) Longitudinal shifts of hoverfly species depend on the diet of the larvae, i.e. species with herbivorous/
detritivorous larvae shift towards eastern locations and species with carnivorous larvae shift towards the west. 
Average predictions ±95% confidence intervals are shown. For statistical details see Supplementary Table S3.
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species which due to their small range size and limited data availability are often not well represented in most 
range change analyses.

Methods
Study region and time periods. Our study region, the Netherlands, is located in NW-Europe, and has 
a temperate climate with cold winters (average minimum temperature of − 1 °C) and warm summers (average 
maximum temperature of 24 °C)38. The most prominent land use systems are agriculture (55% of land area) and 
urban areas (www.fao.org/countryprofiles). The area has experienced major changes in climate38 and land use, 
which have been registered for more than 100 years23,24. Strong modifications of biogeochemical flows have also 
occurred in the last century, including major changes in phosphorus and nitrogen cycling3. Moreover, biodiver-
sity in the Netherlands has been intensively studied since the early 19th century.

We grouped all data (species, climate and land use) into two main time periods (TP1: 1951–1970 and TP2: 
1998–2014). This was based on observed changes in climate conditions (increases in temperature and extreme 
weather events) and land use (high habitat fragmentation and changes to anthropogenic habitats as agriculture 
and urban areas around 1960)23,24. The two periods were centred in years for which land use data of high accu-
racy were available (TP1: 1960 and TP2: 2008; see below) and encompassed, for the species distribution data, 10 
years before and after the central year in period 1 (1951–1970), and a 10 years before and 7 years after in period 
2 (1998–2014). These two time periods therefore may reflect key changes in pollinator species distributions and 
environmental conditions across half a century.

Species distribution data. We studied three important flower visitor groups: bees (Hymenoptera: 
Apoidea), butterflies (Lepidoptera: Papilionoidea and Hesperioidea), and hoverflies (Diptera: Syrphidae). The 
distribution data for each species were obtained for bees and hoverflies from the European Invertebrate Survey 
(EIS-Nederland, www.eis-nederland.nl) and for butterflies from the Dutch National Database of Flora and Fauna 
(NDFF, www.ndff.nl). Experts and volunteers have systematically collected the presence data over the last decades 
and the quality of species identification and the location accuracy of occurrence records has been assessed by the 
EIS and the NDFF (see www.ndff.nl/validatie). For a full description of the species collection methods see www.
ndff.nl/protocollen. Since older species occurrence records have usually a higher uncertainty in their geographic 
location than newer records, we accounted for this uncertainty by compiling all occurrence records at a resolu-
tion of 5 ×  5 km grid cells. We included only species that were present (1) in at least five 5 ×  5 km grid cells, (2) in 
each of the two time periods, and (3) in the gap period (1971–1997). The latter was done to represent all species 
that have been constantly present in the study area since the 1950 s. This guarantees robust species-environment 
responses in the modelling process (see below) and allowed analysing the distribution patterns of a total of 207 
bee species (out of 358 known species in the Netherlands), 61 butterfly species (out of a total of 106), and 202 
species of hoverflies (out of a total of 328) (Supplementary Table S5). Note that given the selection criteria we had 
to exclude very narrowly distributed species which could potentially be threatened in the Netherlands. From the 
1820 grid cells (5 ×  5 km) across the Netherlands, in TP1 914 had records for bees, 894 for butterflies and 1094 for 
hoverflies. In TP2, the number of grid cells was 1346 for bees, 1655 for butterflies and 1592 for hoverflies. Grid 
cells from which samples of the three pollinator groups were extracted were distributed across all the Netherlands 
and across its full latitudinal and longitudinal extent (see Fig. S1).

Species distribution modelling. For constructing species distribution models (SDMs) we extracted cli-
mate and land use data that can have an impact on the survival and distribution of pollinators. For climate, maxi-
mum, minimum and average values of temperature and precipitation per grid cell were obtained from the project 
“ClimateEU: historical and projected climate data for Europe”39. Climatic data were extracted at the same resolu-
tion as the species distribution data (5 ×  5 km grid cells) and then used to calculate the 19 bioclimatic variables as 
described in Hijmans et al.40. After preliminary correlation analyses of all bioclimatic variables we selected four 
precipitation-related variables (all in mm) and five temperature related-variables (all in °C): annual precipitation, 
precipitation of wettest month, precipitation of driest month, precipitation of warmest quarter, mean diurnal 
temperature range, temperature seasonality, mean temperature of wettest quarter, mean temperature of driest 
quarter and mean temperature of warmest quarter. These climate variables showed low to intermediate correla-
tion coefficients (Pearson’s correlation ≤  |0.75|) between each other.

Land use data were obtained from the geo-information department of Wageningen University (www.wage-
ningenur.nl) for both time periods at an original resolution of 25 ×  25 m. Both land use maps for period 1 and 2 
had a high land use classification accuracy (~95% and 85% respectively)23,24. The land use maps were obtained 
for the years 1960 (representing period 1) and 2008 (period 2), which both are the central points in each time 
period for which the species distribution data were aggregated. The newer land use map had a higher thematic 
resolution than the older land use map. Hence, both maps were reclassified to make land use types consistent 
between time periods. Eight land use types were extracted: agriculture, grassland, forest, moors/peat, sandy soils, 
swamps, urban and water. Based on these reclassified land use maps we calculated for each 5 ×  5 km grid cell and 
time period a total of twelve land use metrics that have been shown to impact the distribution and richness of pol-
linators41: percentage of each land use class (for the eight classes), number of land use classes, total edge density  
(m/ha), average patch area of suitable habitat (ha) and the edge density between managed and natural systems  
(m/ha). These metrics characterized three major aspects of landscape and habitat structure42: landscape composi-
tion (nine metrics), habitat fragmentation (two metrics) and spillover potential (one metric) (see below).

For landscape composition, the calculated metrics reflected the percentage of the eight land use types per grid 
cell as well as the total number of land use classes per grid cell (one metric). The total number of land use classes 
was included as a proxy of spatial heterogeneity, which can influence the turnover of pollinator species assem-
blages42. We represented habitat fragmentation with two metrics: the average area of suitable habitat patches and 

http://www.fao.org/countryprofiles
http://www.eis-nederland.nl
http://www.ndff.nl
http://www.ndff.nl/validatie
http://www.ndff.nl/protocollen
http://www.ndff.nl/protocollen
http://www.wageningenur.nl
http://www.wageningenur.nl
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total edge density (total length of edges per hectare). For the former, we classified the land use classes grassland, 
moors/peat, forest and sandy soils as suitable habitat, and agriculture, urban, water and swamps as non-suitable 
habitat43. For the latter, we calculated the density of edges between all land use types in a grid cell. We used 
an additional metric to characterize species spillover potential, i.e. the potential for movements of organisms 
across managed and natural systems44. For this, we considered the land use types grassland and agriculture as 
(intensively-)managed, and the land use types moors/peat, forest, swamps and sandy soils as (semi-)natural sys-
tems. We then calculated the edge density between these two systems. Urban and water were not taken into 
account in this calculation. All calculations of land use metrics were carried out in R (Development Core Team, 
http://cran.r-project.org) with the “SDMTools” package.

With the data on species occurrences, climate and land use we constructed SDMs for each of the 407 bee, 
butterfly and hoverfly species for both period 1 and 2 using MaxEnt45. MaxEnt is a machine learning modelling 
technique with high model accuracy that has been extensively used for modelling large sets of species in locations 
with contrasting environmental conditions46. We selected MaxEnt after comparing it with other SDM algorithms 
(generalized boosting models, generalized linear models, random forest, artificial neural networks) for model-
ling a range of species with different sample sizes and different geographic distributions within the same study 
area, as it was one of the best performing algorithms with high model sensitivity and specificity47. In MaxEnt, we 
allowed the use of different feature types depending on the number of records available as described in Elith et 
al.48. As species sampling collections are often geographically biased, this can also create bias in the environmental 
gradient selection. To account for this, we followed Phillips et al.49 and only extracted background information 
for SDMs from those collection localities where species from the same pollinator group had been sampled. This 
procedure has been shown to greatly increase model performance (“target group approach”)49. It further aids to 
account for possible sampling and environmental selection biases because the modelled data contains the same 
collection bias as the data used for the background selection48. We computed SDMs for each species using ten 
repetitions with a bootstrap approach where 80% of the data was used for training and 20% for model testing. 
In order to account for within algorithm model variation, we obtained an ensemble model for each species by 
averaging the suitability scores across the ten model repetitions and used this ensemble model in subsequent 
analysis. Model performance per species was summarized with the area under the curve (AUC) values of the 
receiver-operating characteristic50. AUC is a common measure of SDM performance with values ranging from 
0 to 1 (higher scores represent higher model accuracy). All implemented SDMs showed high accuracy (average 
AUC ±  SD: 0.81 ±  0.09) across species and periods (Supplementary Table S5). We applied the MaxEnt logistic 
output format to convert the ensemble suitability maps into binary maps (presence-absence) using the threshold 
that maximises the sensitivity and specificity of the model51. These binary distribution maps were then used to 
analyse the spatial changes in pollinator distributions (see below).

Spatial changes in pollinator species distributions. We quantified three different aspects of spatial 
range changes based on modelled species distributions between the two time periods: (1) areal range changes 
(contractions and expansions), (2) latitudinal range shifts, and (3) longitudinal range shifts. Areal range changes 
were calculated between time periods as the percentage gain or the percentage loss in geographic range size of 
each species using the “biomod2” R package (http://cran.r-project.org). We used linear models with Gaussian 
error structure to test if areal range changes of pollinator groups differed significantly from zero and between 
time periods using the pollinator group (bees, butterflies and hoverflies) as explanatory variable. To normalize 
residuals, we used the natural log of the ratio of areal range change as response variable. We then used a post-hoc 
pairwise comparison test (TukeyHSD) to assess whether the three pollinator groups differed significantly in areal 
range changes between the two time periods.

To assess latitudinal and longitudinal range shifts (north-south, east-west), we used the centroids of the pre-
dicted (binary) species distribution maps for period 1 and 2 and calculated the difference in latitudinal and lon-
gitudinal location (in kilometres). This was done using the directional distribution tool in ArcGIS (v10.1 ESRI 
Redlands, CA). Values of zero reflect no change in the latitudinal or longitudinal midpoint of a species geographic 
range between periods, values above zero indicate range shifts towards northern or eastern locations, and values 
below zero represent range shifts towards southern or western locations. We applied Students t-tests for each 
pollinator group to quantify whether differences in latitudinal or longitudinal midpoints differed significantly 
between the two time periods.

The sampling intensity could potentially affect the results obtained for areal range changes and geographic 
distributional shifts. For instance, a different representation of available environmental conditions between time 
periods might affect the outcomes of species distribution models. We therefore investigated if the sampled grid 
cells in TP1 and TP2 were distributed across the same latitudinal and longitudinal extent. The result showed a 
similar and consistent latitudinal and longitudinal distribution of the sampled grid cells across time periods (see 
Fig. S1). We further quantified the area of the ellipsoid containing 95% of the sampled grid cells in TP1 and in TP2 
to test if the reported areal range changes may be affected by a wider distribution of grid cells in TP2 compared 
to TP1. Differences in the area of the ellipsoids of sampled grid cells were similar for bees (TP1 =  73513.5 km2; 
TP2 =  76556.5 km2), butterflies (TP1 =  69872.3 km2; TP2 =  74416.1 km2), and hoverflies (TP1 =  74034.4 km2; 
TP2 =  74132.2 km2). These additional analyses suggest that sampling bias is unlikely to be of major importance 
for the reported areal range changes and geographic range shifts.

Statistical analysis of distributional changes in relation to functional traits. We applied multi-
variate linear models with a Gaussian error structure to analyse if and to what extent species’ functional traits 
(see Table 1) can explain half-century distributional changes of Dutch pollinators. To investigate the possible 
multicollinearity problems between all functional traits we calculated the generalized variance inflation factor 
(GVIF)52. This showed that all variables had GVIF values <  3.2. Hence, the GVIF values were below a commonly 

http://cran.r-project.org
http://cran.r-project.org


www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:24451 | DOI: 10.1038/srep24451

used threshold of 1053, indicating acceptable levels of collinearity for linear model analysis (Table S6). To nor-
malize residuals, we used the natural log of the ratio of areal range change, and the latitudinal as well as the 
longitudinal centroid shifts between time periods as response variables. We tested for all two-way interactions 
between predictor variables because combinations of functional traits may be involved in species responses to 
climate and land-use modifications. Because initial range size (number of occupied 5 ×  5 km cells in period 1) 
might constrain distributional responses to global change, especially when analysing relative values (i.e. species 
that have very small initial ranges are more likely to double their range than species occupying a greater area), we 
included it as a control explanatory variable. Initial range sizes of species as predicted by SDMs covered less than 
27% of the land area of the Netherlands (median: 7%; range: 0.14–27%). All continuous explanatory variables 
were standardized and centred before analysis. We selected the most parsimonious model based on the Bayesian 
Information Criteria (BIC) using the R package “MuMIn”. Stepwise backward and forward model selection based 
on the BIC criteria was chosen because the number of degrees of freedom was very high and, in comparison to 
AIC, this method penalizes more complex models by excluding terms that only explain low amounts of data 
variability54. For comparison, we also kept all candidate models with Δ BIC lower than 2. Where relevant, we also 
show the results of the second best model (see results section).
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